SYSTEM DYNAMICS AND CONTROL – SEMESTER DESIGN PROJECT

TEAM 4:

WILL CLINTON, ALEX CRAIG, RYLEY THARP, CHRIS WHITTON

 \sim

CRUISE CONTROL

BACKGROUND

CRUISE CONTROL

- Invented by Ralph Teetor in 1948
- First implemented in 1958 Chrysler Imperial
- Made driving:
 - Safer
 - More fuel efficient
- Limitations:
- Only useful for open road
- Can be dangerous in rapidly oscillating traffic

- Invented by William Chundrlik and Pamela Labuhn in 1990
 Patented by GM in 1991
- Actively monitors vehicles in front and responds to changing speeds
- Utilizes many inputs:
 - Radar and/or lasers to measure distance
 - Vehicle acceleration/velocity
 - Lead vehicle velocity
 - And more

SETUP

METHODOLOGY

- Key assumptions:
 - Initial Velocity (V_i) = 88 $\left(\frac{ft}{s}\right)$
 - Distance to Lead Car $(X_0) = 50 (ft)$
 - "Two-second Rule"
 - Safe Deceleration Time Constant $(T_c) = 15$ (sec)
 - Mass of Vehicle (m) $= \frac{3000lb}{32.2^{ft}/s^2} = 93.17 \ slugs$
 - Braking Force $(F_b) = \left[\frac{V_i - \frac{X_o}{2}}{T_c}\right] \times m = \left[\frac{88^{ft}/s - \frac{50}{2}ft/s}{15s}\right] \times 93.17slugs = 391.31lbf$

- Key assumptions (Continued):
 - Acceleration Force (u) = 500 (lbf)
 - Drag = Damping Constant (b) = $3.346 \left(\frac{lbf \cdot s}{ft}\right)$

TRANSFER FUNCTIONS

- ▶ (▶	$\frac{7.535e7s^4 + 3.246e8s^3 + 3.439e7s^2 + 1.228e6s + 1.466e4}{6.54e11s^6 + 2.864e12s^5 + 5.393e11s^4 + 1.98e11s^3 + 1.847e10s^2 + 6.365e8s + 7.488e6}$	•
	Final Combined TF	

RESPONSE

Open-Loop Response

- RISE TIME:
 - 4.84s
- OVERSHOOT:
 - 62.26%
- SETTLING TIME:
 - 106.92s

P-Controller Response

- RISE TIME:
 - 4.19s
- OVERSHOOT:
 - 66.10%
- SETTLING TIME:
 - 106.00s
- K_P = 149.64

PI-Controller Response

- RISE TIME:
 - 35.5s
- OVERSHOOT:
 - 2.21%
- SETTLING TIME:
 - 138.00s
- $K_{\rm P} = 13.25$
- K_I = 21.37

PD-Controller Response

- RISE TIME:
 - 2.11s
- OVERSHOOT:
 - 40.7%
- SETTLING TIME:
 - 24.0s
- $K_{\rm P} = 970.90$
- K_D = 2308.42

PID-Controller Response

- RISE TIME:
 - 1.54s
- OVERSHOOT:
 - 4.45%
- SETTLING TIME:
 - 32.3s
- K_P = 2673.68
- K_I = 203.47
- $K_{\rm D} = 8783.15$

DIAGRAMS

Original

MODEL

QUESTIONS?